89 research outputs found

    Pb-induced cellular defense system in the root meristematic cells of Allium sativum L

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Electron microscopy (EM) techniques enable identification of the main accumulations of lead (Pb) in cells and cellular organelles and observations of changes in cell ultrastructure. Although there is extensive literature relating to studies on the influence of heavy metals on plants, Pb tolerance strategies of plants have not yet been fully explained. <it>Allium sativum </it>L. is a potential plant for absorption and accumulation of heavy metals. In previous investigations the effects of different concentrations (10<sup>-5 </sup>to 10<sup>-3 </sup>M) of Pb were investigated in <it>A. sativum</it>, indicating a significant inhibitory effect on shoot and root growth at 10<sup>-3 </sup>to 10<sup>-4 </sup>M Pb. In the present study, we used EM and cytochemistry to investigate ultrastructural alterations, identify the synthesis and distribution of cysteine-rich proteins induced by Pb and explain the possible mechanisms of the Pb-induced cellular defense system in <it>A. sativum</it>.</p> <p>Results</p> <p>After 1 h of Pb treatment, dictyosomes were accompanied by numerous vesicles within cytoplasm. The endoplasm reticulum (ER) with swollen cisternae was arranged along the cell wall after 2 h. Some flattened cisternae were broken up into small closed vesicles and the nuclear envelope was generally more dilated after 4 h. During 24-36 h, phenomena appeared such as high vacuolization of cytoplasm and electron-dense granules in cell walls, vacuoles, cytoplasm and mitochondrial membranes. Other changes included mitochondrial swelling and loss of cristae, and vacuolization of ER and dictyosomes during 48-72 h. In the Pb-treatment groups, silver grains were observed in cell walls and in cytoplasm, suggesting the Gomori-Swift reaction can indirectly evaluate the Pb effects on plant cells.</p> <p>Conclusions</p> <p>Cell walls can immobilize some Pb ions. Cysteine-rich proteins in cell walls were confirmed by the Gomori-Swift reaction. The morphological alterations in plasma membrane, dictyosomes and ER reflect the features of detoxification and tolerance under Pb stress. Vacuoles are ultimately one of main storage sites of Pb. Root meristematic cells of <it>A. sativum </it>exposed to lower Pb have a rapid and effective defense system, but with the increased level of Pb in the cytosol, cells were seriously injured.</p

    Transit Assignment Modeling Approaches based on Interval Uncertainty of Urban Public Transit Net Impedance

    Get PDF
    The data of the regular bus in Shenzhen during October 2019 was taken as an example. The improved model for the public transportation assignment was established based on considering the interval uncertainty theory and the basic algorithm of interval value, and the interval value acquisition method of bus impedance is established, the Method of Successive Averages ( MSA) algorithm is used to solve the problem. Finally, the error analysis of bus passenger flow assignment before and after the improvement of the model is carried out. It is found that the average absolute percentage error of the improved assignment model is 8.7% compared with the real value, while the average absolute percentage error is 10.9% when the impedance is invariant value, The result of passenger flow assignment under interval impedance is obviously better than that under certain impedance. On non-working days, when the bus passenger flow changes greatly, the bus passenger flow assignment result under interval impedance is better

    Rapid in vivo analysis of synthetic promoters for plant pathogen phytosensing

    Get PDF
    Background We aimed to engineer transgenic plants for the purpose of early detection of plant pathogen infection, which was accomplished by employing synthetic pathogen inducible promoters fused to reporter genes for altered phenotypes in response to the pathogen infection. Toward this end, a number of synthetic promoters consisting of inducible regulatory elements fused to a red fluorescent protein (RFP) reporter were constructed for use in phytosensing. Results For rapid analysis, an Agrobacterium-mediated transient expression assay was evaluated, then utilized to assess the inducibility of each synthetic promoter construct in vivo. Tobacco (Nicotiana tabacum cv. Xanthi) leaves were infiltrated with Agrobacterium harboring the individual synthetic promoter-reporter constructs. The infiltrated tobacco leaves were re-infiltrated with biotic (bacterial pathogens) or abiotic (plant defense signal molecules salicylic acid, ethylene and methyl jasmonate) agents 24 and 48 hours after initial agroinfiltration, followed by RFP measurements at relevant time points after treatment. These analyses indicated that the synthetic promoter constructs were capable of conferring the inducibility of the RFP reporter in response to appropriate phytohormones and bacterial pathogens, accordingly. Conclusions These observations demonstrate that the Agrobacterium-mediated transient expression is an efficient method for in vivo assays of promoter constructs in less than one week. Our results provide the opportunity to gain further insights into the versatility of the expression system as a potential tool for high-throughput in planta expression screening prior to generating stably transgenic plants for pathogen phytosensing. This system could also be utilized for temporary phytosensing; e.g., not requiring stably transgenic plants

    Determination of 1,3-Dioleic acid-2-palmitoyl triglyceride in Infant Formula by High Performance Liquid Chromatography

    Get PDF
    A method for the quantification of 1,3-dioleyl-2-palmitoyl-glycerol (OPO) in infant formula was developed. The samples were treated with ammonia and extracted with organic solvents. The fat containing OPO was purified on a NH2 solid-phase extraction (SPE) cartridge packed with aminopropyl as the sorbent. The eluate was separated by silver ion chromatography using 0.55% acetonitrile-hexane as the mobile phase. The detection was carried out with a high performance liquid chromatography-evaporative light scattering detector (HPLC-ELSD). This novel procedure enabled the complete separation of OPO and its isomer 1,2-dioleyl-3-palmitoyl-glycerol (OOP), thus allowing for the accurate quantification of OPO. The developed method showed the desired linearity in the concentration range of 25–500 μg/mL with a determination coefficient (R2) of 0.999 6. The limits of detection (LOD) and limits of quantification (LOQ) were 0.30 and 0.90 g/kg, respectively. At spiked concentrations from 1 to 96 g/kg, the average recoveries of OPO varied from 97.1% to 104.2% with relative standard deviations (RSD) between 1.2% and 2.9%. The precision and accuracy of this method met the relevant requirements, and it passed the inter-laboratory collaborative validation. Our investigation analyzed 39 commercial samples of OPO-fortified infant formula in China, revealing that the measured OPO content only accounted for 28.4% to 59.7% of the labelled value, which is mainly due to the inconsistency of detection methods

    Preparation of Copper Oxide/TiO2 Composite Films by Mechanical Ball Milling and Investigated Photocatalytic Activity

    Get PDF
    The Cu/Ti composite coatings were prepared by the mechanical ball milling, the CuO/TiO2 and Cu2O/TiO2 composite photocatalytic films were obtained by the subsequent oxidation process. The microstructure of the composite films was analyzed by X-ray Diffraction (XRD)and scanning election microscope (SEM). The photocatalytic activity was evaluated, the effects of ball milling time on the formation of the Cu/Ti coatings were investigated, and the effects of the oxidation temperature and oxidation atmosphere on microstructure and photocatalytic activity of the films were studied. The results illustrate that the ball milling time has significant effects on the formation of the coatings and the coatings are continuous and compact by ball milling for 15 h. The photocatalytic activity of the CuO/TiO2 composite films is increased first and then decreased with the oxidation temperature increases, and the photocatalytic activity is the best at 500 °C. The CuO/TiO2 composite films are obtained by the oxidation of Cu/Ti coatings at 500 °C for 15 h in the air, while the Cu2O/TiO2 composite films are oxidized in carbon atmosphere. Photocatalysis efficiency of the films is obviously enhanced with the help of the p-n junction heterostructure in the Cu2O/TiO2 composite films

    Transcription Coactivator ANGUSTIFOLIA3 (AN3) Regulates Leafy Head Formation in Chinese Cabbage

    Get PDF
    Leafy head formation in Chinese cabbage (B. rapa ssp. pekinensis cv. Bre) results from leaf curvature, which is under the tight control of genes involved in the adaxial-abaxial patterning during leaf development. The transcriptional coactivator ANGUSTIFOLIA3 (AN3) binds to the SWI/SNF chromatin remodeling complexes formed around ATPases such as BRAHMA (BRM) in order to regulate transcription in various aspects of leaf development such as cell proliferation, leaf primordia expansion, and leaf adaxial/abaxial patterning in Arabidopsis. However, its regulatory function in Chinese cabbage remains poorly understood. Here, we analyzed the expression patterns of the Chinese cabbage AN3 gene (BrAN3) before and after leafy head formation, and produced BrAN3 gene silencing plants by using the turnip yellow mosaic virus (TYMV)-derived vector in order to explore its potential function in leafy head formation in Chinese cabbage. We found that BrAN3 had distinct expression patterns in the leaves of Chinese cabbage at the rosette and heading stages. We also found silencing of BrAN3 stimulated leafy head formation at the early stage. Transcriptome analysis indicated that silencing of BrAN3 modulated the hormone signaling pathways of auxin, ethylene, GA, JA, ABA, BR, CK, and SA in Chinese cabbage. Our study offers unique insights into the function of BrAN3 in leafy head formation in Chinese cabbage

    The genomic and bulked segregant analysis of \u3ci\u3eCurcuma alismatifolia\u3c/i\u3e revealed its diverse bract pigmentation

    Get PDF
    Compared with most flowers where the showy part comprises specialized leaves (petals) directly subtending the reproductive structures, most Zingiberaceae species produce showy ‘‘flowers’’ through modifications of leaves (bracts) subtending the true flowers throughout an inflorescence. Curcuma alismatifolia, belonging to the Zingiberaceae family, a plant species originating from Southeast Asia, has become increasingly popular in the flower market worldwide because of its varied and esthetically pleasing bracts produced in different cultivars. Here, we present the chromosome-scale genome assembly of C. alismatifolia ‘‘Chiang Mai Pink’’ and explore the underlying mechanisms of bract pigmentation. Comparative genomic analysis revealed C. alismatifolia contains a residual signal of wholegenome duplication. Duplicated genes, including pigment-related genes, exhibit functional and structural differentiation resulting in diverse bract colors among C. alismatifolia cultivars. In addition, we identified the key genes that produce different colored bracts in C. alismatifolia, such as F3\u275’H, DFR, ANS and several transcription factors for anthocyanin synthesis, as well as chlH and CAO in the chlorophyll synthesis pathway by conducting transcriptomic analysis, bulked segregant analysis using both DNA and RNA data, and population genomic analysis. This work provides data for understanding the mechanism of bract pigmentation and will accelerate breeding in developing novel cultivars with richly colored bracts in C. alismatifolia and related species. It is also important to understand the variation in the evolution of the Zingiberaceae family

    Embryogenic cell suspensions for high-capacity genetic transformation and regeneration of switchgrass (Panicum virgatum L.)

    Get PDF
    Background Switchgrass (Panicum virgatum L.), a North American prairie grassland species, is a potential lignocellulosic biofuel feedstock owing to its wide adaptability and biomass production. Production and genetic manipulation of switchgrass should be useful to improve its biomass composition and production for bioenergy applications. The goal of this project was to develop a high-throughput stable switchgrass transformation method using Agrobacterium tumefaciens with subsequent plant regeneration. Results Regenerable embryogenic cell suspension cultures were established from friable type II callus-derived inflorescences using two genotypes selected from the synthetic switchgrass variety ‘Performer’ tissue culture lines 32 and 605. The cell suspension cultures were composed of a heterogeneous fine mixture culture of single cells and aggregates. Agrobacterium tumefaciens strain GV3101 was optimum to transfer into cells the pANIC-10A vector with a hygromycin-selectable marker gene and a pporRFP orange fluorescent protein marker gene at an 85% transformation efficiency. Liquid cultures gave rise to embryogenic callus and then shoots, of which up to 94% formed roots. The resulting transgenic plants were phenotypically indistinguishable from the non-transgenic parent lines. Conclusion The new cell suspension-based protocol enables high-throughput Agrobacterium-mediated transformation and regeneration of switchgrass in which plants are recovered within 6–7 months from culture establishment

    An evaluation for the standardization of the Allium cepa test as cytotoxicity and genotoxicity assay

    Get PDF
    A general report on the use of the Allium test as cytotoxicological and genotoxicological assay is proposed, with particular emphasis about the standardization of the test in several common applications. The intraspecific variation in Allium cepa has been overlooked, as in most investigations no mention is made about origin and denomination of the onion cultivar used. A standardization of the used material would allow a better generalization of the results, since we cannot be sure that all cultivars would give the same response. A more frequent use of transmission electron microscopy (TEM) investigation is proposed. Even if relatively time consuming and not available in all laboratories, it may help to better understand the mechanism of cytotoxicity, since many morphological characters may appear similar but be arisen from different processes observable only with TEM. About statistical testing, tests other than chi-squared may be used in case of a lower amount of data. The most commonly used statistical tests are the parametric tests ANOVA and Student’s t, and the nonparametric tests Kruskal–Wallis and Mann–Whitney U, for analysis of variance. Tests should be used also to assess the minimal sample dimension for obtaining significance, since data collection (microscope observation) appears to be one of the main bottle necks of the test. Also the use of the Allium test for testing liposomes and other nanovectors for drug delivery is proposed, in order to assess the cytotoxicity of these types of medium and the possible increase in cytotoxicity of the associated drug
    corecore